Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37874939

RESUMO

An efficient separation technology involving ammonia (NH3) and carbon dioxide (CO2) is of great importance for achieving low-carbon economy, environmental protection, and resource utilization. However, directly separating NH3 and CO2 for ammonia-based CO2 capture processes is still a great challenge. Herein, we propose a new strategy for selective separation of NH3 and CO2 by functional hybrid membranes that integrate polyimide (PI) and ionic liquids (ILs). The incorporated protic IL [Bim][NTf2] is confined in the interchain segment of PI, which decreases the fractional free volume and narrows the gas transport channel, benefiting the high separation selectivity of hybrid membranes. At the same time, the confined IL also provides high NH3 affinity for transport channels, promoting NH3 selective and fast transport owing to strong hydrogen bonding interaction between [Bim][NTf2] and NH3 molecules. Thus, the optimal hybrid membrane exhibits an ultrahigh NH3/CO2 ideal selectivity of up to 159 at 30 °C without sacrificing permeability, which is 60 times higher than that of the neat PI membrane and superior to the state-of-the art reported values. Moreover, the introduction of [Bim][NTf2] also reduces the permeation active energy of NH3 and reverses the hybrid membrane toward "NH3 affinity", as understood by studying the effect of temperature. Also, NH3 molecules are much easier to transport at high temperature, showing great application potential in direct NH3/CO2 separation. Overall, this work provides a promising ultraselective membrane material for ammonia-based CO2 capture processes.

2.
J Am Chem Soc ; 145(27): 14793-14801, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37351897

RESUMO

Metal-organic framework (MOF) membranes have attracted significant research interest in gas separation, but efficient helium (He) separation remains a challenge due to the weak polarizability of He and the intrinsic pore size flexibility of MOFs. Herein, incorporated fullerenes (C60 and C70) were used to tune the crystallographic phase composition of ZIF-8 membranes, thus creating small and fixed apertures for selective He permeation. The fullerene-modified ZIF-8 (C60@ZIF-8 and C70@ZIF-8) membranes contain about 20% of the rigid-lattice ZIF-8_I-43m phase and have been prepared as 200-350 nm thick supported layers through electrochemical synthesis. They show a significantly enhanced molecular sieving for He/N2,CH4 together with a satisfactory He permeance of >200 GPU. Specifically, the He/N2 selectivity of the C70@ZIF-8 membrane is up to 30.4, which is much higher than that of the fullerene-free ZIF-8 membrane (5.1) and nearly an order of magnitude higher than those of other reported He-selective MOF membranes. A continuous long-term gas permeation test over 780 h under dry and humid conditions proved the excellent stability of the fullerene-modified ZIF-8 membranes. The general validity and versatility of the proposed strategy for MOF membrane preparation are also demonstrated by the enhancement of the separation performance of a fullerene-modified ZIF-76 membrane.

3.
Membranes (Basel) ; 9(9)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484439

RESUMO

Air separation is very important from the viewpoint of the economic and environmental advantages. In this work, defect-free facilitated transport membranes based on poly(amide-12-b-ethylene oxide) (Pebax-2533) and tetra(p-methoxylphenyl)porphyrin cobalt chloride (T(p-OCH3)PPCoCl) were fabricated in systematically varied compositions for O2/N2 separation. T(p-OCH3)PPCoCl was introduced as carriers that selectively and reversibly interacted with O2 and facilitated O2 transport in the membrane. The T(p-OCH3)PPCoCl had good compatibility with the Pebax-2533 via the hydrogen bond interaction and formed a uniform and thin selective layer on the substrate. The O2 separation performance of the thin film composite (TFC) membranes was improved by adding a small amount of the T(p-OCH3)PPCoCl and decreasing the feed pressure. At the pressure of 0.035 MPa, the O2 permeability and O2/N2 selectivity of the 0.6 wt % T(p-OCH3)PPCoCl/Pebax-2533 was more than 3.5 times that of the Pebax-2533 TFC membrane, which reached the 2008 Robeson upper bound. It provides a candidate membrane material for O2/N2 efficient separation in moderate conditions.

4.
Chem Commun (Camb) ; 54(90): 12671-12685, 2018 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357137

RESUMO

It is imperative to develop efficient, reversible and economic technologies for separating CO2 which mainly comes from flue gas, natural gas and syngas. Membranes based on functionalized ionic liquids (ILs) have attracted much attention from researchers in recent years, and have been considered as a very promising technology. This feature article focuses on the research progress in CO2 separation using functionalized IL membranes. The recent advances in the preparation, separation performance, and separation mechanism of supported IL membranes (SILMs), pure poly(ionic liquid) (PIL) membranes, PIL-copolymer membranes, PIL-IL composite membranes and polymer-IL composite membranes for CO2 separation have been reviewed. In addition, the future directions and prospects for CO2 separation using functionalized IL membranes are given.

5.
Int J Biochem Cell Biol ; 105: 61-69, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30316871

RESUMO

Dysfunction of HSF4 is associated with congenital cataracts. HSF4 transcription activity is turned on and regulated by phosphorylation during early postnatal lens development. Our previous data suggested that mutation HSF4b/S299A can upregulate HSF4 transcription activity in vitro, but the biological significance of posttranslational modification on HSF4/S299 during lens development remains unclear. Here, we found that the mutation HSF4/S299A can upregulate the expression of HSP25 and alpha B-crystallin at both protein and mRNA levels in mouse the lens epithelial cell line, but HSF4/S299D does not. Using the rabbit polyclonal antibody against phospho-S299 of HSF4, we found that EGF and ectopic expression of MEK1 can increase the phosphorylation of HSF4/S299 and induce HSF4 sumoylation, and these effects are inhibited by U0126. ERK1/2 can phosphorylate the S299 in HSF4/wt but not in HSF4/S299A in the in vitro kinase assay. Functionally, ectopic MEK1 can inhibit HSF4-controled alpha B-crystallin expression but has less effect on HSF4/S299A. EGF can upregulate phospho-HSF4/S299 and downregulate alpha B-crystallin expression in P3 mouse lens, and this downregulation is suppressed by U0126. During mouse lens development, phosphorylation of HSF4/S299 is downregulated in P3 lens and upregulated in P7 and P14 lens. However, in 2 months old lens, both phosphorylation of HSF4/S299 and total HSF4 protein are decreased. Interestingly, ERK1/2 activity is lower in P3 lens than in P7 and P14 lens, which is in line with the phosphorylation of HSF4/S299. Taken together, our data demonstrate that HSF4/299 is a phosphorylation target of MEK1-ERK1/2, and phosphorylation of S299 is responsible for tuning down HSF4 transcription activity during postnatal lens development.


Assuntos
Fatores de Transcrição de Choque Térmico/genética , Cristalino/metabolismo , Sistema de Sinalização das MAP Quinases , Substituição de Aminoácidos , Animais , Células Cultivadas , Regulação para Baixo , Técnicas de Inativação de Genes , Proteínas de Choque Térmico HSP27/genética , Fatores de Transcrição de Choque Térmico/química , Fatores de Transcrição de Choque Térmico/deficiência , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Cristalino/crescimento & desenvolvimento , Camundongos , Chaperonas Moleculares , Proteínas de Neoplasias/genética , Fosforilação , Mutação Puntual , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina/metabolismo , Transcrição Gênica , Regulação para Cima , Cadeia B de alfa-Cristalina/genética
6.
DNA Cell Biol ; 37(5): 449-456, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29489419

RESUMO

Mutations in GJA8 are associated with hereditary autosomal dominant and recessive cataract formation. In this study, a novel insert mutation in GJA8 was identified in a Chinese congenital cataract family and cosegregated with the disease in this pedigree. This insert mutation introduces five additional amino acid residues YAVHY after histidine at the 95 site (p.H95_A96insYAVHY) within the second transmembrane (TM2) domain of Cx50 protein (Cx50-insert). Ectopic expression of Cx50-insert protein impairs the hemichannel functions and gap junction activity compared to wild-type Cx50 protein in human lens epithelial cells. Cx50-insert proteins were mislocated from cytoplasmic membrane to endoplasmic reticulum and lysosome. In mouse lens tissue, our results showed that Cx50 predominant expresses in epithelial cells and fiber cells at the transition zone of lens hinting its roles in lens differentiation. Taken together, these data suggest that the novel insert mutation in the TM2 domain of Cx50 protein, which impairs its trafficking to the cell membrane and gap-junction function, is associated with the cataract formation in this Chinese pedigree.


Assuntos
Catarata/genética , Membrana Celular/metabolismo , Conexinas/genética , Conexinas/metabolismo , Junções Comunicantes/genética , Mutagênese Insercional , Animais , Povo Asiático/genética , Catarata/congênito , Catarata/metabolismo , Células Cultivadas , Conexinas/química , Células Epiteliais/metabolismo , Família , Feminino , Junções Comunicantes/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linhagem , Domínios Proteicos/genética , Transporte Proteico/genética
7.
Cell Stress Chaperones ; 23(4): 571-579, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29164525

RESUMO

Heat shock factor 4 controls the transcription of small heat shock proteins (e.g., HSP25, alpha B-cyrstallin, and r-crystallin), that play important roles in modulating lens proteostasis. However, the molecular mechanism underlying HSF4-mediated transcription is still unclear. Using yeast two hybrid, we found that HSF4 interacts with the ATP-dependent DEXD/H-box RNA helicase UAP56, and their interaction in lens epithelial cell line was further confirmed by GST-pull down assay. UAP56 is a vital regulator of pre-mRNA splicing and mature mRNA nuclear export. The immunofluorescence assay showed that HSF4 and UBA56 co-localize with each other in the nucleus of lens epithelial cells. Ectopic UAP56 upregulated HSF4-controlled HSP25 and alpha B-crystallin proteins expression, while knocking down UAP56 by shRNA reversed it. Moreover, UAP56 interacts with and facilitates the nuclear exportation of HSP25 and alpha B-crystallin mRNA without impacting their total mRNA expression level. In lens tissues, both UAP56 and HSF4 are expressed in the same nucleus of lens fiber cells, and their expression levels are simultaneously reduced with fiber cell maturation. Taken together, these data suggested that UAP56 is a novel regulator of HSF4 and might upregulate HSF4's downstream mRNA maturation and nuclear exportation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Neoplasias/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Animais , Núcleo Celular/metabolismo , Células Epiteliais/metabolismo , Proteínas de Choque Térmico/genética , Humanos , Cristalino/citologia , Camundongos , Chaperonas Moleculares , Proteínas de Neoplasias/genética , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...